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The Nondemolition Measurement of Quantum Time

V. P. Belavkin1 and M. G. Perkins1
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The problem of time operator in quantum mechanics is revisited. The unsharp
measurement model for quantum time based on the dynamical system±clock
interaction is studied. Our analysis shows that the problem of the quantum time
operator with continuous spectrum cannot be separated from the measurement
problem for quantum time.

1. INTRODUCTION: THE TIME OPERATOR

The problem of time measurement in quantum theory cannot be solved

within the von Neumann (1955) theory simply by defining the corresponding

self-adjoint operator as a generator of the shift for the energy of a physical

system S (assumed to have a positive spectrum, e P R+), as no such operator

exists in the Hilbert space *S.

For the purpose of simplicity let us study this problem for a quantum

system with a continuous (unbounded) energy spectrum of constant degener-

acy; for the case of a free quantum particle see Holevo (1982). The system

Hilbert space can be decomposed into a family of eigenspaces * e ( e P R1)

of fixed energy. The dimensionality of * e corresponds to the degeneracy of

the eigenvectors corresponding to e . We represent the state vectors c P *S

by a family { c ( e ) | e $ 0} of Hilbert space vectors c ( e ) P * e such that

* `
0 | c ( e )|2 d e 5 1.

Now, without loss of generality, we can treat all c ( e ) as elements of

some Hilbert space *. This is because all the * e can each be embedded in

the same *, so for all e , c ( e ) P * e # *. Then we can describe each state
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vector | c & by an analytic [on the upper half-plane, where Im( t ) . 0] function

h:C j *:

h ( t ) 5
1

! 2 p " #
`

0

e i e t / " c ( e ) d e

which is completely defined by its value on R. This analytic representation

restricted to t P R is called the time representation. The Hilbert space *Ä S

. *S of these analytic functions with the squared norm |h|2 : 5 * `
2 ` |h ( t )|2

d t 5 | c |2 is embedded as one half into the Hilbert space L 2
*(R) of all square-

integrable functions of R with values in *.

In this enlarged space L 2
*(R) there exists a self-adjoint operator t Ãdefined

by the multiplication [ t Ãh] ( t ) 5 t h ( t ) with the eigen-spectral family {Et: t
P R} of orthoprojectors [Et h] ( t ) 5 1t ( t )h ( t ), where 1t( t ) 5 0 for t # t ,

and 5 1 for t . t .

However, the operator t Ãdoes not leave the physical subspace *Ä S ,
L 2

*(R) invariant. Instead, the unitary operator U l 5 e i l t Ã/ " functions as an

isometry h( t ) j e i l t / " h ( t ) on *S corresponding to the shift | e & j | e 1 l &
on *S for each l . 0. Note that the isometry on *Ä S is adjoint not to U 2 1

l ,

but to the energy shift operator V l in *Ä S given by [V l c ] ( e ) 5 c ( e 1 l ).

The operator V
²
l in this representation acts as

[V ²
l c ]( e ) : 5 H c ( e 2 l ), e . l

0, e # l

Indeed, if c ( e ) 5 (2 p " ) 2 1/2 * `
2 ` e 2 i e t / " h ( t )d t 5 0 for all e , 0, then

! 2 p " [e i l t Ã/ " h]( t ) 5 #
`

0

e i( e 1 l ) t / " c ( e ) d e 5 #
`

0

ei e t / " [V ²
l c ]( e )d e

i.e., e i l t Ã/ " h is analytic in the upper half-plane, so the operator U l leaves *Ä S

invariant. Note that the shift operator V l 5 P0U
2 1
l given by the orthoprojector

P0 in L 2
* (R) onto *Ä S 5 L 2

* (R 1 ) is defined on *S by

V l | e & 5 H | e 2 l & , l # e
0, l . e

[P l c ]( e ) 5 H c ( e ), e . l
0, e # l

Here P l 5 V ²
l V l is the orthoprojector, giving the kernel I 2 P l for V l . So

the operator V l is not isometric, but only coisometric in *S as [V l c ]( e ) 5
0 for all e if c is localized as c ( e ) 5 0 for e $ l .

Although the operators V l are not normal and do not commute, they

have the overcomplete analytic family { | s) | Re(s) . 0} of nonorthonorm al
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common eigenvectors, given by the Laplace transform | s) 5 * `
0 e 2 e s | e & d e

of the generalized basis { | e & | e P R+}. The proof is as follows:

V l | s) 5 #
`

0

e 2 e sV l | e & d e 5 #
`

l

e 2 e s | e 2 l & d e 5 e 2 l s | s)

Let us show that the vectors | s) labeled by complex numbers s are not

orthogonal, and are normalizable only if Re(s) . 0. Indeed,

(s | s8) 5 #
`

0 #
`

0

e 2 ( e 8sÅ 1 e s8) ^ e 8 | e & d e d e 8 5 #
`

0

e 2 (s1 s8) d e

since ^ e 8 | e & 5 d ( e 2 e 8). But * `
0 e 2 e (sÅ 1 s8) d e 5 1 / (sÅ 1 s8), and so the

vectors are not orthogonal. If s 5 s8, then

(s | s) 5
1

2 Re(s)
5

1

2k
, ` if k . 0

where s 5 k 1 i " 2 1 t .

This family is complete in L 2 (R+) and hence in *S in the sense that

every state vector c P *S can be written as an integral span

c 5
1

2 p i #
i `

2 i `

| s) h (s*) ds

along any path from 2 i ` to i ` in the domain of analyticity of the function
h (s*), where h (s) 5 (s | c and s * 5 2 sÅ . The completeness relation, written

for each component c ( e ) 5 ^ e | c , is simply the inversion of the Laplace

*-transform

h (s*) 5 #
`

0

(s* | e & c ( e ) d e , (s* | e & 5 e s e

since c ( e ) 5 (2 p i) 2 1 * i `
2 i ` ^ e | s) h (s*)ds, ^ e | s) 5 e 2 se . This means that the

vector functions h (k 1 i " 2 1 t ) 5 ! 2 p " h( t 1 i " k) define a representation

of state vectors c P *S in the space of * -analytic functions h (s) with the

inner product

^ h 8 | h & 5
1

(2 p )2 #
i `

2 i ` #
i `

2 i `

1

s 1 s8
^ h 8(s) | h (s8) & ds ds8

given by the kernel 2 p /(sÅ 1 s8), as it coincides with

^ c 8 | c & 5 #
`

0

^ c 8 ( e ) | c ( e ) & d e .

However, this inner product can also be expressed as the single integral
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^ h8 | h & 5 lim
k ® 0

1

2 p " #
`

2 `

^ h 8(k 1 i " 2 1 t ) | h (k 1 i " 2 1 t ) & d t

Indeed,

#
`

2 `

| h (k 1 i " 2 1 t )|2 d t

5 #
`

2 ` 1 #
`

0 #
`

0

e 2 k( e 1 e 8) 1 i t ( e 2 e 8)/ " ^ c ( e 8) | c ( e ) & d e d e 2 d t

Now, since * `
2 ` e ix t / " d t 5 2 p " d (x), we obtain

#
`

2 `

| h (k 1 i " 2 1 t )|2 d t 5 2 p " #
`

0

e 2 2k e | c ( e )|2 d e

Given that the family of vectors | s) is nonorthogonal , this means that it is

over complete. The equality is true for all c and since c ( e ) 5 ^ e | c and

h (k 1 i " 2 1 t ) 5 (k 1 i " 2 1 t | c ,

then this can be written equivalently as

#
`

2 `

| k 1 i " 2 1 t )(k 1 i " 2 1 t | d t 5 2 p " #
`

0

e 2 2k e | e & ^ e | d e 5 2 p " e 2 2kH

where H is the induced Hamiltonian of the system in L 2 (R+). In the limit

as k ® 0, we obtain

2 p " |h|2 5 2 p " #
`

2 `

|h ( t )|2 d t 5 2 p " #
`

0

^ c ( e ) | c ( e ) & d e 5 2 p " | c |2

that is, * `
2 ` | i " 2 1 t ) (i " 2 1 t | d t 5 2 p " 1Ã.

2. THE IDEAL UNSHARP MEASUREMENT OF TIME

Let us consider the nonorthonorm al family of right eigenvectors { | s):
Re(s) 5 0} for the coshift operators V l at the limit Re(s) ® 0. Now

1

2 p " #
`

2 `

| i " 2 1 t )(i " 2 1 t | d t 5
1

2 p "
lim
k ® 0 #

`

2 `

| k 1 i " 2 1 t )(k 1 i " 2 1 t | d t 5 1Ã

and we have the normalization condition * | h ( t )|2 d t 5 1 if | c |2 5 1. So

we can treat
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h ( t ) 5
1

! 2 p "
(i " 2 1 t | c 5

1

! 2 p "
h (i " 2 1 t )

as the probability amplitude of a time measurement ( t -measurement)

described by the continuous overcomplete family of generalized vectors

x ( t ) 5
1

! 2 p "
| i " 2 1 t ), t P R

For each Borel subset D , the integral * D | i " 2 1 t ) (i " 2 1 t | d t defines the

unsharp, positive, contractive operator P D acting as

P D c 5 * D x ( t )h ( t ) d t

with h ( t ) 5 x ( t ) ² c . The map D j P D defines a positive operator-valued

measure, normalized to the identity operator: P R 1 5 1Ãin *Ä S and so in *S.
However, this measure is not orthogonal (projector-valued) and this is why

it describes the unsharp (fuzzy) measurement of the time in initial state c .

This measurement gives the best results among all the unsharp measurements

of the time parameter of a coherent quantum signal under the maximal

likelihood criterion (Helstrom, 1976; Holevo, 1978). However, the nonorthog-
onal vectors x ( t ) cannot be regarded as the time eigenstates that are not yet

normalized, as they are not normalizable. Moreover, such ideal measurements

demolish the quantum system because there is no way to obtain the a posteriori
state vectors c t P *S, compatible with this measurement, using the projection

or any other reduction postulate.

To show this, consider the generalization (Belavkin, 1994) of the projec-
tion postulate to the continuous spectrum case. This states that after the

measurement returning a result t , the state of the system is given by the

normalization c t 5 G ( t ) c /|G ( t ) c | of a linear transform G ( t ) c of the a
priori state vector c given by a family {G ( t )} of Hilbert space operators

G ( t ) with * `
2 ` G ( t ) ² G ( t )d t 5 1Ã. The operator-valued measure P D is then

defined by the integration

P D 5 # D

G ² ( t )G ( t )d t

of the operator-valued density P ( t ) 5 G ² ( t )G ( t ) of this measure. However,

because of the continuity of time t there are no eigenprojectors corresponding
to the continuous values t P R. Therefore, instead of the orthoprojectors,

some other, nonorthogonal reduction operators G ( t ) corresponding to an

unsharp time measurement must be used to obtain a Hilbert space state vector

G ( t ) c with |G ( t ) c | , ` for (almost) each result t of the measurement.
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For a candidate measurement operator G ( t ) to make physical sense, it

must satisfy certain conditions. Two of these have already been dealt with,

but the following still remain:
(i) The family {G ( t )} must commute with the energy coshift, [G ( t ),

V ( l )] 5 0, l P R+, so that the nondemolition measurement of time will be

compatible with the ideal time measurement, described by the time vectors

| iHS 2 1 t ), i.e.,

(s | G( t ) 5 gs( t )(s | , t P R

where gs( t ) are complex L 2 (R)-functions.
(ii) The family {G ( t )} must be covariant with respect to the time shift,

e 2 iHt/ " G( t 2 t) 5 e i u (t)G( t )e 2 iHt/ " , t P R

where u (t) P (0, 2 p ), so that the predicted physics is unchanged by our

choice of the origin for time.

One can easily show that the ideal unsharp measurement examined
above is not compatible with these conditions, because there is no such

covariant G ( t ) that commutes with V ²
l for which

# D

G ( t ) ² G ( t ) d t 5 P D 5
1

2 p " # D

| i " 2 1 t )(i " 2 1 t | d t

for any measurable D , R,

Suppose that this were so. We know that the probability density of t is

given by | h ( t ) | 2. On the other hand, from the commutativity with G ( t ), it

follows that the a posteriori state vector c t is obtained by modulation by

some filter (or envelope) function gs( t ) in the s-representation, and then by
the normalization

h t (s) 5 (s | c t 5
gs( t ) h (s)

c ( t )

where

| c ( t ) | 2 5
1

2 p i # Re(s) 5 0

| gs( t ) | 2| h (s)|2 ds

is the corresponding probability density. As these two expressions for the

probability density must be equal, and since | h (s)|2 5 2 p " |h ( t )|2, where

s 5 i " 2 1 t 8, then | gs( t ) | 2 must be a delta function. There is, however, no such

square-integrable function gs( t ).
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3. A REALIZATION OF UNSHARP MEASUREMENT OF TIME

The covariant measurement operators G ( t ) can be obtained from the

interaction model with a clock, generalizing the model (Belavkin, 1994;

Stratonovich and Belavkin, 1996) with the discrete spectrum. The non-Her-
mitian model for such an interaction is similar to the model for nondemolition

measurements of quantum phase (Belavkin and Bendjaballah, 1994). It is

given by the nonunitary interaction operator V 2 xÃ 5 P0 exp[i( t Ã̂ xÃ)/ " ],

defining G ( t ) 5 P0 w ( t 2 t Ã) as

G ( t ) c ( e ) 5 ( ^ e | ^ ^ t | )V 2 xÃ( c ^ w ) 5 c ( e 2 xÃ) w ( t )

Here xÃis the momentum operator of the clock pointer; | t & , t P R are the

generalized eigenvectors of the self-adjoint operator P: f j i " Ãf 8 in L2(R),
describing the continuous pointer position p 5 t in the momentum representa-

tion xÃf (x) 5 xf (x), and w ( t ) 5 fÄ ( t ) is a clock wavefunction, given as the

involute transform

fÄ ( t ) 5 (2 p " ) 2 1/2 #
`

2 `

fÅ (x)e itx / " dx

of the admissible initial state f (x) 5 0, x . 0, | w |2 5 * 0
2 ` | f (x) | 2 dx 5 1

(with negative pointer momentum.) Because the admissible wavefunctions
cannot be localized in the position representation, the time measurement is

always unsharp, but it can be made almost sharp by choosing f (x) 5 1/ ! E
for x P [ 2 E, 0] and f (x) 5 0 for x ¸ [ 2 E, 0] and going to the limit E ® ` .

Consider as an example the cases where the continuous energy spectrum

is in the range (a) [0, ` ) and (b) [0, E ].

(a) Take the Hilbert space of the clock to be given by the linear span
of { | x & | x P ( 2 ` , 0]} as in the discrete case. Then consider a wavefunction

of the clock in the momentum x-representation of the form f (x) 5 (2 l )1/2

e l x, with l . 0 real. This is normalized and we can find the wavefunction

of the pointer in the position representation, given by w ( t ) 5 ^ t | w , which is

w ( t ) 5 1 " l
p 2

1/2

1

" l 1 i t

Hence the probability distribution of p is | w ( t ) | 2 5 " l / p ( t 2 1 " 2 l 2).

Now, since ^ t | V 2 xÃw 5 P0 w ( t 2 t Ã) and P ( t ) 5 G ( t ) ² G ( t ) is the operator-

valued density for time measure, then | w ( t ) | 2 gives the probability of measur-
ing a time different from the mean time by p 5 t . There are thus two

possibilities for the sharp measurement of time:

(i) In the classical limit, " 5 0, we obtain | w ( t ) | 2 as a delta function

corresponding to the exact classical measurement of time.
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(ii) In the limit as l ® 0, we again find that | w ( t ) | 2 takes the form of

a delta function and hence get a sharp measurement of time. We cannot,

however, take l 5 0, but since the height of the function | w ( t ) | 2 at t 5 0 is
1/( " l ) we effectively obtain sharp measurement of time when l # 1/ " .

(b) The clock Hilbert space is now { | x & | x P [ 2 E, 0]}. Hence the

normalized clock wavefunction in the momentum representation becomes

f (x) 5 1 2 l
1 2 e 2 2 l E 2

1/2

e l x

So in the position representation we obtain

| w ( t ) | 2 5
" l

p (1 2 e 2 2 l E)( t 2 1 " 2 l 2) 1 1 2 2e 2 l E cos
t E

"
1 e 2 2 l E 2

As before, if we consider the classical limit, " 5 0, then we obtain the

sharp measurement of time. Now consider the limit l ® 0. In this case, we

find that, when t Þ 0,

| w ( t ) | 2 ®
" [1 2 cos( t E / " )]

p E t 2

and when t ® 0, | w ( t ) | 2 ® E /(2 p " ). Hence it is not sufficient to have l 5
0 (which is equivalent to the clock wavefunction f (x) 5 1/ = E for x P [ 2 E,

0] and f (x) 5 0 for x ¸ [ 2 E, 0]) but we must also take E ® ` , as noted
above, in order to obtain a sharp measurement.
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